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Technical Issues

For commercial success, SOFC technologies must ultimately be 
manufacturable and cost competitive. A number of factors contribute to 
uncertainty at this time. 

Cell design, stack designs, and production processes are still in early 
stages of development

SOFC stacks are radically different in structure from any currently mass-
produced ceramic products
Relationships between cell and stack design, design tolerances, and 
stack performance are not very well established
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Technical Issues

Proposed manufacturing processes may be amenable to high-volume 
production, however, specific processes and sequences must be selected. 
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Technical Issues

Relationships between cell and stack design, design tolerances, stack 
performance, and process yields are not very well established. 

Properties of individual layers, e.g., physical attributes, conductivity 
(electrical or ionic), polarization, transport, mechanical, are not well 
defined as a function of temperature

Manufacturing Options
Individual process steps
Sequence of steps

Impact on
Process yield, tolerances, and reproducibility
Performance
Thermal cycling and Life
Cost
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Technical Issues    Challenges

A state-of-the-art SOFC manufacturing model will allow developers and 
NETL to minimize the uncertainties inherently associated with 
commercialization of a new technology. The model must be able to:

Handle all key SOFC stack components, including ceramic cells and 
interconnects

Relate manufactured cost to product quality and likely performance, 
taking into account

manufacturing tolerances
product yield
line speed

Address a range of manufacturing volumes, ranging from tens of MW to 
hundreds of MW per year

Adapt to individual production processes under development by SECA 
industrial teams
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R&D Objectives and Approach       Objectives 

The Manufacturing Model Project will develop a tool to provide guidance to 
the DOE and SECA development teams on system design and 
manufacturing processes selection.
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The primary output of the model will be an activity based manufacturing 
cost for various SOFC system scenarios.
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Phase I will be conducted in three tasks.
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Activities for Phase I       Deliverables    

We anticipate that we will provide DOE and industrial teams with some key 
conclusions and recommendations:

Identification of critical manufacturing steps and performance parameters
if considerable uncertainty exists about these steps, specific additional 
SECA R&D objectives may be developed

Refinement of SECA technology cost and performance estimates
Definition of desirable next steps
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Model Architecture    Modeling Approach    Link to Performance/Structural Module

The cost model will be augmented with a SOFC performance model to help 
relate manufacturing quality to performance. 
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Model Architecture    Modeling Approach    Cost Model

The model uses a set of databases to calculate cost for defined production 
(process flow) scenarios and performance assumptions. 
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Model Architecture       Performance/Structural Module Capabilities

The module also accounts for all the relevant thermo-electrochemical 
phenomena which influence cell performance and, ultimately, cost.  

Interconnect
• Heat conduction
• Current 

conduction

Anode and cathode reaction zones
• Electrochemical reactions
• Heat generation

Electrolyte
• Ion conduction
• Heat conduction

Flow passages
• Heat convection
• Plug flow of gas

Anode and cathode porous electrodes
• Heat conduction
• Current conduction
• Species diffusion 
• Internal reforming on anode
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Model Architecture       Performance/Structural Module Interface with Cost Model

The performance/structural module is used to predict power density, 
thermal stresses, and other performance factors that influence cost.  
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Manufacturing Model      Technical Issues

We met with the SECA technical teams to discuss what relationships 
among cell and stack design, design tolerances, stack performance, and 
process yields should be considered in Phase 1? 

Properties of individual layers
Thickness and other physical attributes
Polarization and conductivity (electrical or ionic)
Transport
Mechanical

Manufacturing Options
Individual process steps
Sequence of steps

Impact on
Process yield, tolerances, and reproducibility
Performance
Thermal cycling and life
Cost
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Manufacturing Model     Stack Design

We discussed selection of a stack design for demonstration of the model 
capabilities and an initial assessment of the impact of selected
manufacturing/design factors.  

What planar stack configuration should 
be modeled in Phase I?

Rectangular or circular
Co-, counter-, or cross-flow

What design details (e.g., seals, 
manifolds, insulation) should be 
included in the Phase I modeling 
effort?
What size (kW) stack should we 
consider?
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Manufacturing Model     Performance/Structural Module

What choices affecting both cost and performance should we analyze?  

For example, we could consider the impact of layer thickness on system 
power and thermal stresses.
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Manufacturing Model     Use of Performance/Structural Module

In addition, the Performance/Structural Module could be used for stand-
alone simulations to evaluate the sensitivity of particular material or 
process parameters.
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19

Manufacturing Model Parameters    Baseline Case    Design

As a basis for Phase I, we will use an anode supported design.  

Anode/Electrolyte/CathodeAnode/Electrolyte/CathodeAnode/Electrolyte/Cathode One-Half Interconnect LayerOneOne--Half Interconnect LayerHalf Interconnect Layer

Ni Cermet Anode
700 µm

8YSZ & LSM
Cathode 
50 µm

Y-stabilized ZrO2
Electrolyte

10 µm

Ferritic Stainless Steel 4 mm

2 mm

We will only assess the stack costs in this phase. We also considered 
inclusion of reforming layers or materials in the stack, but have 
insufficient design information in this Phase of work.



20

Manufacturing Model Parameters Performance Parameters

We propose using the following set of operating parameters for the stack.

ParameterParameter Value/Range

• Cell voltage

• Power Density
• Composition of the reactant 

streams
• Gas inlet temperatures
• Fuel utilization 
• Cathode stoichiometry

• Cell voltage

• Power Density
• Composition of the reactant 

streams
• Gas inlet temperatures
• Fuel utilization 
• Cathode stoichiometry

• 0.7 V
• 500 mW/cm2 (not reactant limited)
• Anode: reformate; Cathode: air

• 650°C at the Anode and Cathode
• ~ 50 %
• ~ 5, adjusted to effect an exit temperature of 

800°C.  

• 0.7 V
• 500 mW/cm2 (not reactant limited)
• Anode: reformate; Cathode: air

• 650°C at the Anode and Cathode
• ~ 50 %
• ~ 5, adjusted to effect an exit temperature of 

800°C.  

Value/Range

The performance model will calculate the current distribution over the 
electrode, the average power density, and the actual fuel utilization.
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Manufacturing Model Parameters    Impact of Layer Thickness

We will look at the trade-offs between layer thickness and their impact 
on performance and cost. The latter impacted by material quantities 
and yield.  

Layer Nominal
Thickness  (µm) Remark

Anode

Material

700

• Minimize thickness to reduce material 
weight and resistance

• Impact of thickness on strength and MEA 
stress

Electrolyte

Ni-YSZ

10
• Barrier properties vs thickness critical
• Impact of coating technology and thickness 

on defects 

Cathode

YSZ

50 • Coating technologies 

Interconnect

YSZ- LSM

• Roll form technique used in baseline study Metal 4300

As part of this effort we will look at the impact of the attributes of 
various process technologies on each layer, types of defects, and 
number of defects. It will be critical to find relationships between 
defects, materials, and processes.  
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Manufacturing Model Parameters      Economies of Scale

We will consider how production volume impacts cost ($/kW). 

Assumptions
5 kW unit size
unit operations are automated to achieve uniformity and maximize
yield
increasing volume can change equipment scale, speed, material 
logistics in the process, and automation of assembly

Parameters
Days per week
Shifts per day

Commercialization (Volume) Steps
Production Prototypes
Market Entry
Market Penetration

Our 1999 study was made assuming 250 MW, however, we have not fixed 
the volume steps at this time for this project. 
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Manufacturing Model Parameters    Process Flow Options

We will look at a multi-fired process flow option in Phase I. 
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Manufacturing Model Discussion Non-Technical Issues

In this phase, we will use generic data, however, for Phase 2 we will have to 
develop a protocol(s) for protection of proprietary information with 
participating teams.

Issues:

Protection of individual SECA team 
proprietary information
Security of User Interface
Access to model
Access to process and equipment data 
and specifications

Protection of individual SECA team 
proprietary information
Security of User Interface
Access to model
Access to process and equipment data 
and specifications

Java based User
Interface
UserUser
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Activity-Based Cost
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Next Steps       Phase I    

We expect Phase I to be completed in approximately 3-6 months. 

Modify Model and Analyze Selected Scenarios and Issues
Layer thickness and processes
Economies of scale

Discuss results with SECA teams
Develop plans for Phase 2

Phase I Final Report
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Activities for Phase I       TIAX Team Members

The TIAX core team consists of five members whose backgrounds are 
particularly appropriate to this project. 

Staff Email Telephone

Yong Yang yang.yong@tiax.biz 617-498-6282

Eric Carlson

Project Input

carlson.e@tiax.biz 617-498-5903

Chandler Fulton

Principal Investigator

fulton.chandler@tiax.biz 617-498-5926

Suresh Sriramulu

System modeling

sriramulu.suresh@tiax.biz 617-498-6242Fuel cell technology

Manufacturing model
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